- Camerman, A., Mastropaolo, D. & Camerman, N. (1987). Proc. Natl Acad. Sci. USA, 84, 8239–8242.
- Enraf-Nonius (1977). CAD-4 Operations Manual. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Hossain, N., Papchikhin, A., Garg, N., Fedorov, I. & Chattopadhyaya, J. (1993). Nucleosides & Nucleotides, 12, 499–528.
- Hypercube Inc. (1994). HYPERCHEM. Version 4. Hypercube Inc., 419 Phillip Street, Waterloo, Ontario, N2L 3X2, Canada.
- McArdle, P. (1993). J. Appl. Cryst. 26, 752.
- Neidle, S. (1994). In DNA Structure and Recognition. Oxford University Press.
- Painter, G. R., Aulabaugh A. E. & Andrews, C. W. (1993). Biochem. Biophys. Res. Commun. 191, 1166–1171.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Taylor, E. W., Van Roey, P., Schinazi, R. F. & Chu, C. K. (1990). Antiviral Chem. Chemother. 1, 163–173.
- Van Roey, P., Salerno, J. M., Chu, C. K., & Schinazi, R. F. (1989). Proc. Natl Acad. Sci. USA, 86, 3929–3933.
- Van Roey, P., Salerno, J. M., Duax, W. L., Chu, C. K., Ahn, M. K. & Schinazi, R. F. (1988). J. Am. Chem. Soc. 110, 2277–2282.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1996). C52, 3177-3179

1-Methyl-2-phenyldecahydroquinolin-4-one Oxime

V. K. GANESH,^{*a*} D. VELMURUGAN,^{*a*} A. THIRUVALLUVAR,^{*b*} V. PARTHASARATHI,^{*b*} N. RAMASUBBU^{*c*} AND D. NATARAJAN^{*d*}

^aDepartment of Crystallography and Biophysics, University of Madras, Guindy Campus, Madras 600 025, India, ^bDepartment of Physics, Bharathidasan University, Tiruchirapalli 620 024, India, ^cDepartment of Oral Biology and Dental Research, School of Dental Medicine, Suny, Buffalo, NY 14214, USA, and ^dDepartment of Chemistry, Annamali University, Annamalainagar 608 002, India

(Received 8 January 1996; accepted 11 July 1996)

Abstract

The piperidine and cyclohexane rings in the title compound, $C_{16}H_{22}N_2O$, adopt a chair-chair conformation. The methyl group at N1 and the phenyl ring at C2 are oriented equatorially while the rest of the molecule is planar. The molecules are well stacked and the packing in the unit cell is stabilized by O—H···N hydrogenbonded chains and weaker C—H···O and C—H···N bonds.

Comment

An ORTEPII (Johnson, 1976) diagram of the title compound, (I), with the atom-numbering scheme is shown in Fig. 1. The torsion angle H9–C9–C10–H10

© 1996 International Union of Crystallography Printed in Great Britain – all rights reserved $[179 (2)^{\circ}]$ confirms the *trans* fusion of the piperidine and cyclohexane rings in the molecule. It is evident from the ring torsion angles that the piperidine and cyclohexane rings are in a chair-chair conformation.

The angles C2—N1—C11 = 109.8 (2), C2—N1—C9 = 109.4 (1) and C9—N1—C11 = 110.7 (1)° indicate tetrahedral geometry at the N atom. The methyl group at N1 [C3—C2—N1—C11 = -173.9 (2)°] and the phenyl ring at C2 [C4—C3—C2—C14 = 178.7 (2)°] are equatorially oriented. The torsion angle C3—C4— N12—O13 [-2.1 (3)°] indicates that the oxime moiety has a planar conformation.

Fig. 1. ORTEPII (Johnson, 1976) diagram of the molecule with 50% probability ellipsoids.

From the stereoview of the packing (Fig. 2), it is clear that the phenyl ring of one molecule stacks well with the piperidine ring of the other molecule. It is found that there is an intermolecular $O - H \cdots N$ hydrogen bond (Table 3) which leads to a chain-like arrangement of the molecules (Fig. 2). In addition, an intramolecular $C - H \cdots O$ hydrogen bond and intermolecular $C - H \cdots O$ bonds are also found (Table 3).

Fig. 2. Stereoview of the molecular packing (down the *a* axis) showing the chain-like arrangement of the molecules formed by intermolecular $O - H \cdots N$ hydrogen bonds.

Acta Crystallographica Section C ISSN 0108-2701 © 1996

$C_{16}H_{22}N_2O$

C14

C15

C16

C17

C18

C19

0.7153 (3)

0.8695 (3)

1.0118 (4)

1.0028 (4)

0.8482 (4)

0.7047 (3)

Experimental

The title compound was prepared according to the procedure of Baliah, Pandiarajan & Lakshmanan (1978). The solid oxime obtained was filtered and recrystallized from ethanol.

Crystal data	Table 2. Selected geometric parameters (Å, °)				
$C_{16}H_{22}N_{2}O$ $M_{r} = 258.36$ Monoclinic $P2_{1}/n$ $a = 7.6940 (1) \text{ Å}$ $b = 11.1350 (1) \text{ Å}$ $c = 17.6949 (1) \text{ Å}$ $\beta = 101.62 (1)^{\circ}$ $V = 14840 (1) \text{ Å}^{3}$	Cu $K\alpha$ radiation $\lambda = 1.54184$ Å Cell parameters from 24 reflections $\theta = 16-25^{\circ}$ $\mu = 0.54$ mm ⁻¹ T = 298 K Needle $0.4 \times 0.38 \times 0.26$ mm	N1-C2 N1-C9 N1-C11 C2-C3 C2-C14 C3-C4 C4-C10 C4-N12 C5-C6 C5-C10 C6-C7	1.489 (2) 1.491 (2) 1.475 (4) 1.520 (3) 1.521 (3) 1.507 (3) 1.276 (3) 1.523 (4) 1.532 (3) 1.506 (5)	C7C8 C8C9 C9C10 N12O13 C14C15 C14C19 C15C16 C16C17 C17C18 C18C19	1.523 (3) 1.526 (3) 1.531 (3) 1.410 (2) 1.379 (3) 1.394 (3) 1.380 (4) 1.389 (5) 1.381 (4) 1.376 (4)
$V = 1484.9 (1) \text{ A}$ $Z = 4$ $D_x = 1.16 \text{ Mg m}^{-3}$ $D_m \text{ not measured}$ Data collection	Colourless	C9-N1-C11 C2-N1-C11 C2-N1-C9 N1-C2-C14 N1-C2-C3 C3-C2-C14	110.7 (1) 109.8 (2) 109.4 (1) 113.1 (2) 109.7 (2) 109.6 (2)	C8—C9—C10 N1—C9—C10 C5—C10—C9 C4—C10—C9 C4—C10—C5 C4—N12—O13	109.7 (2) 111.1 (2) 111.0 (2) 111.4 (2) 114.3 (2) 112.2 (2)
Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: empirical (<i>DIFABS</i> ; Walker & Stuart, 1983) $T_{min} = 0.835$, $T_{max} =$ 0.986	$R_{int} = 0.016$ $\theta_{max} = 65^{\circ}$ $h = 0 \rightarrow 8$ $k = 0 \rightarrow 13$ $l = -20 \rightarrow 20$ 3 standard reflections monitored every 200 reflections	C2-C3-C4 C3-C4-N12 C3-C4-N12 C6-C5-C10 C5-C6-C7 C6-C7-C8 C7-C8-C9 N1-C9-C8	110.9 (2) 125.7 (2) 116.2 (2) 118.1 (2) 110.7 (2) 111.2 (3) 112.0 (2) 112.0 (2) 111.8 (2)	C2-C14-C19 C2-C14-C15 C15-C14-C15 C15-C16-C16 C15-C16-C17 C16-C17-C18 C17-C18-C19 C14-C19-C18	121.5 (2) 119.4 (2) 119.0 (2) 120.9 (3) 120.1 (3) 118.9 (3) 121.1 (2) 119.9 (2)
2859 measured reflections 2431 independent reflections	frequency: 120 min intensity decay: <1.5%	Table 3. Hydrogen-bonding geometry (Å, °)			

Refinement

2007 observed reflections $[I > 2\sigma(I)]$

Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.017$
R = 0.05	$\Delta \rho_{\rm max} = 0.289 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.067	$\Delta \rho_{\rm min} = -0.225 \ {\rm e} \ {\rm \AA}^{-3}$
S = 0.95	Extinction correction: none
2007 reflections	Atomic scattering factors
260 parameters	from International Tables
All H-atom parameters	for X-ray Crystallography
refined	(1974, Vol. IV)
$w = 1/[\sigma^2(F) + 0.0078F^2]$	

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$)

$$B_{\text{eq}} = (8\pi^2/3)\sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j$$

	x	у	Z	B_{eq}
N1	0.4946 (2)	0.6338 (1)	0.1695(1)	3.03 (5)
C2	0.5584 (3)	0.7195 (2)	0.2337(1)	3.38 (5)
C3	0.4073 (3)	0.7503 (2)	0.2740(1)	4.06 (5)
C4	0.2528 (3)	0.8000(2)	0.2177(1)	3.31 (5)
C5	0.0572 (4)	0.7945 (2)	0.0828(1)	4.76 (8)
C6	-0.0031 (4)	0.7138 (3)	0.0128 (2)	5.55 (8)
C7	0.1523 (4)	0.6725 (3)	-0.0204(1)	5.28 (8)
C8	0.2948 (4)	0.6126 (2)	0.0401 (1)	4.30 (7)
C9	0.3569 (3)	0.6934 (2)	0.1100(1)	3.36 (5)
C10	0.1966 (3)	0.7308 (2)	0.1436(1)	3.38 (5)
C11	0.6451 (4)	0.5936(3)	0.1358(1)	4.99 (8)
N12	0.1631 (3)	0.8927 (2)	0.2282(1)	3.69 (5)
013	0.2219 (2)	0.9435(1)	0.3019(1)	4.60 (5)

Table 5. Hydrogen-bonding geometry (A, *)

0.6719 (2)

0.7384 (3)

0.7001 (3)

0.5920 (3)

0.5257 (2)

0.5648 (2)

0.2924(1)

0.3093 (1)

0.3645 (2)

0.4027 (2)

0.3859 (2)

0.3320(1)

3.50(5)

4.48(7)

5.63 (9)

5.74 (9)

5.24 (8)

4.17 (7)

D — $H \cdot \cdot \cdot A$	$\mathbf{H} \cdots \mathbf{A}$	$D \cdots A$	$D - H \cdots A$
O13—H13· · ·N1'	1.90 (3)	2.804 (2)	152 (3)
C3-H3B···O13	2.25 (3)	2.681 (3)	105 (2)
C16—H16· · ·O13 ⁱⁱ	2.74 (3)	3.451 (4)	126 (2)
C8—H8A· · · O13 ⁱⁱⁱ	2.64 (2)	3.395 (3)	130(2)
C10—H10· · · O13 ⁱⁿ	2.58 (2)	3.364 (3)	132 (2)
C19H19· · · N12 ⁱⁱⁱ	2.40 (3)	3.406 (3)	169 (3)
C15—H15···N12 ⁱⁱ	2.68 (3)	3.379 (4)	126(2)
• • • • • •			

Symmetry codes: (i) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$; (ii) 1 + x, y, z; (iii) $\frac{1}{2} - x$, $y - \frac{1}{2}$, $\frac{1}{2} - z$.

H atoms were located from difference Fourier maps and were refined isotropically.

Data collection: Enraf-Nonius CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: SDP (Frenz, 1978). Data reduction: SDP. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELX76 (Sheldrick, 1976). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: PARST (Nardelli, 1983).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: DE1035). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Baliah, V., Pandiarajan, K., Lakshmanan, M. R. (1978). Ind. J. Chem. B16, 72-73.
- Enraf-Nonius (1989). CAD-4 Software. Version 5. Enraf-Nonius, Delft, The Netherlands.

- Frenz, B. A. (1978). The Enraf-Nonius CAD-4 A Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld & G. C. Bassi, pp. 64–71. Delft University Press.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Nardelli, M. (1983). Comput. Chem. 7, 95-98.

- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. University of Cambridge, England.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1996). C52, 3179-3181

An Optically Active Pentacoordinate Silicate: (+)-Bis(triethylammonium) Bis-[(R,R)-tartrato(4–)]diphenyldisilicate

ZHI-GANG WANG, SHENG-GAO LIU, DONG WANG AND XIU-MEI SUI

Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China. E-mail: huangsl@infoc3.icas.ac.cn

(Received 19 April 1996; accepted 11 July 1996)

Abstract

The title compound, $2C_6H_{16}N^+$. $C_{20}H_{14}O_{12}Si_2^{2-}$, was prepared by the reaction of (R, R)-(+)-tartaric acid with triethoxyphenylsilane and triethylamine in ethanol. The structure of this optically active pentacoordinate phenylsilicate consists of independent bis[(R, R)-tartrato]diphenyldisilicate anions and triethylammonium cations. In the crystal, the two Si atoms are five-coordinate and the geometry of each of the Si atoms is distorted from a trigonal bipyramid towards a square pyramid along the Berry pseudorotational coordinate by *ca* 9.8 and 8.9%, respectively.

Comment

The study of hypervalent silicon compounds is currently one of the most interesting areas of research in organosilicon chemistry (Holmes, 1990; Chuit, Corriu, Reye & Young, 1993; Tacke, Becht, Lopez-Mras & Sperlich, 1993). In particular, the five-coordinate silicates have drawn much attention over the past few years, their preparation and structures having been investigated extensively (Frye, 1970; Tacke, Lopez-Mras & Jones, 1994; Holmes, Day, Harland, Sau & Holmes, 1984; Small, McCord, Greaces & Shea, 1995; Tamao *et al.*, 1995; Hosomi, Kohra, Ogata, Yauagi & Tominaga, 1990). Tacke, Mühleisen & Jones (1994) reported the preparation and structure of the first optically active

© 1996 International Union of Crystallography Printed in Great Britain – all rights reserved pentacoordinate silicate. However, work on the crystal structures of optically active hypervalent organosilicon compounds is quite rare. We report here the crystal structure of a new optically active pentacoordinate silicate: (+)-bis(triethylammonium) bis[(R,R)-tartrato(4-)]-diphenyldisilicate, (I).

The disilicate dianion contains two pentacoordinate (formally negatively charged) Si atoms, each of which is coordinated by one phenyl group and four O atoms from two chiral tetradentate (R,R)-tartrato(4-) ligands which bridge the two Si atoms such that each ligand bonds to each of the Si atoms at the two coordination sites forming a group of four five-membered rings. Charge balance is provided by two triethylammonium cations. The geometry of the two five-coordinate Si atoms, Si(1) and Si(2), is distorted from an ideal trigonal bipyramid towards a square pyramid by ca 9.8 and 8.9%, respectively, as calculated by the dihedralangle method (Holmes & Deiters, 1977). The axial Si—O bond lengths are Si(1)—O(1) 1.838 (4), Si(1)— O(3) 1.799 (4), Si(2)—O(5) 1.848 (4) and Si(2)—O(8)1.801 (4) A. The equatorial Si-O bond lengths are Si(1) - O(2) 1.671(4), Si(1) - O(4) 1.668(4), Si(2) - O(4) 1.668(4), Si(2) - O(4) 1.668(4), Si(2) - O(4) 1.668(4), Si(4) - O(4) 1.668(4) -O(6) 1.671 (4) and Si(2)—O(7) 1.665 (4) Å.

Fig. 1. ORTEP (Johnson, 1965) view of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.